

## Class Xth Chapter 2– Polynomials

- Q.1 Find the zeros of the polynomial  $f(x) = x^2 + 7x + 12$  and verify the relation between its zeros and coefficients.
- 1.  $\frac{-7}{2}$ ,  $\frac{12}{1}$
- Q.2 Find the zeros of the polynomials  $f(x) = 2x^2 + 5x 12$  and verify the relation between its zeros and coefficients.
- 2.  $\frac{-5}{2}$ ,  $\frac{-12}{2}$
- Q.3 Find the zeros of the polynomials  $f(x) = x^2 2$  and verify the relation between its zeros and coefficients.
- 3.  $\frac{0}{1}$ ,  $\frac{-2}{1}$
- Q.4 Obtain the zeros of the quadratic polynomial  $\sqrt{3} x^2 8x + 4\sqrt{3}$  and verify the relation between its zeros and coefficients. [CBSE 2008C]
- 4.  $\frac{8}{\sqrt{3}}, \frac{4\sqrt{3}}{\sqrt{3}}$
- Q.5 Find a quadratic polynomial, the sum and product of whose zeros are –5 and 6 respectively.
- 5.  $f(x) = x^2 + 5x + 6$
- Q.6 If one zero of the polynomial  $(a^2 + 9)x^2 + 13x + 6a$  is reciprocal of the other, find the value of a. [CBSE

# 2008]

- 6. a = 3
- Q.7 Find a quadratic polynomial whose zeros are 1 and –3. Verify the relation between the coefficients and zeros of the polynomial. [CBSE 2008C]
- 7.  $\frac{-2}{1}$ ,  $\frac{-3}{1}$
- Q.8 If the product of the zero of the polynomial  $(ax^2 6x 6)$  is 4, find the value of a.

[CBSE 2008]

8. 
$$a = \frac{-3}{2}$$

#### **EXERCISE 2A**

Q 1. Find the zeros of the quadratic polynomial  $(x^2 + 3x - 10)$  and verify the relation between its zeros and coefficients.



- Q 2. Find the zeros of the quadratic polynomial  $(6x^2 7x 3)$  and verify the relation between its zeros and coefficients.
- Q 3. Find the zeros of the quadratic polynomial  $4x^2 4x 3$  and verify the relation between the zeros and the coefficients. [CBSE 2008C]
- Q 4. Find the zeros of the quadratic polynomial  $5x^2 4 8x$  and verify the relationship between the zeros and the coefficients of the given polynomial. [CBSE 2008]
- Q 5. Find the zeros of the quadratic polynomial  $6x^2 3 7x$  and verify the relationship between the zeros and the coefficients of the given polynomial. [CBSE 2008]
- Q 6. Find the zeros of the quadratic polynomial  $2x^2 11x + 15$  and verify the relation between the zeros and the coefficients.
- Q 7. Find the zeros of the quadratic polynomial ( $x^2$ -5) and verify the relation between the zeros and the coefficients.
- Q 8. Find the zeros of the quadratic polynomial  $(8x^2 4)$  and verify the relation between the zeros and the coefficients.
- Q 9. Find the zeros of the quadratic polynomial  $(5u^2 + 10u)$  and verify the relation between the zeros and the coefficients.
- Q 10. Find the quadratic polynomial whose zeros are 2 and -6. Verify the relation between the coefficients and the zeros of the polynomial.
- Q 11. Find the quadratic polynomial whose zeros are  $\frac{2}{3}$  and  $\frac{-1}{4}$ . Verify the relation between the coefficients and the zeros of the polynomial.
- Q 12. Find the quadratic polynomial, sum of whose zeros is 8 and their product is 12. Hence, find the zeros of the polynomial. [CBSE 2008]
- Q 13. Find the quadratic polynomial, the sum of whose zeros is -5 and their product is 6. Hence, find the zeros of the polynomial.
- Q 14. Find the quadratic polynomial, the sum of whose zeros is  $\left(\frac{5}{2}\right)$  and their product is 1. Hence, find the zeros of the polynomial.
- Q 15. Find the quadratic polynomial, the sum of whose zeros is 0 and their product is -1. Hence, find the zeros of the polynomial.
- Q 16. Find the quadratic polynomial, the sum of whose zeros is  $\sqrt{2}$  and their product is -12. Hence, find the zeros of the polynomial.

**HINT**  $x^2 - \sqrt{2}x - 12 = 0 \Rightarrow x^2 - 3\sqrt{2}x + 2\sqrt{2}x - 12 = 0 \Rightarrow (x - 3\sqrt{2})(x + 2\sqrt{2}) = 0.$ 

Q 17. If  $\alpha$ ,  $\beta$  are the zeros of a polynomial, such that  $\alpha$  +  $\beta$  = 6 and  $\alpha\beta$  = 4, then write the polynomial. [CBSE 2010]

## **ANSWERS (EXERCISE 2A)**

1. -5,2 2. 
$$\frac{3}{2}$$
,  $\frac{-1}{3}$  3.  $\frac{3}{2}$ ,  $\frac{-1}{2}$  4. 2,  $\frac{-2}{5}$  5.  $\frac{3}{2}$ ,  $\frac{-1}{3}$  6. 3,1 7.  $\sqrt{5}$ ,  $-\sqrt{5}$ 





8. 
$$\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}$$

9. 
$$-2$$
, 010.  $x^2 + 4x - 12$ 

9. 
$$-2$$
, 010.  $x^2 + 4x - 12$  11.  $12x^2 - 5x - 2$  12.  $(x^2 - 8x + 12)$ ,  $\{6, 2\}$  13.

$$(x^2 + 5x + 6)$$
,  $\{-3, -2\}$  14.  $2x^2 - 5x + 2$ ,  $\left\{2, \frac{1}{2}\right\}$  15.  $(x^2 - 1)$ ,  $\{1, -1\}$  16.  $(x^2 - \sqrt{2} \times - 12)$ ,  $\{3\sqrt{2}, -12\}$ 

$$2\sqrt{2}$$
 } 17.  $x^2$  - 6x + 4

- Verify that 2, -3 and 4 are the zeros of the cubic polynomial  $p(x) = (x^3 3x^2 10x + 24)$ . Q.1 Also verify the relation between the zeros and coefficients of p(x).
- 1.  $3, \frac{-10}{1}, \frac{-24}{1}$
- Verify that 3, -1 and  $\frac{-1}{3}$  are the zeros of the cubic polynomials p(x) =  $3x^3 5x^2 11x 3$ and verify the relation between its zeros and coefficients.
- 2.  $\frac{5}{3}$ ,  $\frac{-11}{3}$ ,  $\frac{3}{3}$
- Find a cubic polynomial with the sum of its zeros, sum of the products of its zeros taken Q.3 two at a time and the product of its zeros as 2, -7 and -14 respectively.
- $3. x^3 2x^2 7x + 14$
- If the zeros of the polynomial  $x^3 3x^2 + x + 1$  are (a b), a, (a + b), find a and b.
- 4. a = 1 and b =  $\pm \sqrt{2}$
- Q.5 Find a cubic polynomial whose zero are 3, 5 and -2.
- 5. -1, -30
- Divide  $3 x + 2x^2$  by (2 x) and verify the division algorithm. Q.6
- Divide  $5x^3 13x^2 + 21x 14$  by  $(3 2x + x^2)$  and verify the division algorithm. Q.7
- Q.8 What real number should be subtracted from the polynomial  $(3x^3 + 10x^2 - 14x + 9)$  so that (3x - 2) divides it exactly? [CBSE 2009Cl
- 8.5
- On dividing  $(x^3 3x^3 + x + 2)$  by a polynomial g(x), the quotient and remainder are (x 2)Q.9 and (-2x + 4) respectively. Find g(x). [CBSE 2009C]
- 9.  $g(x) = (x^2 x + 1)$
- If the polynomial  $(x^4 + 2x^3 + 12x + 18)$  is divided by another polynomial  $(x^2 + 5)$ , the remainder comes out to be (px + q). Find the values of p and q. [CBSE 2009]
- 10. p = 2 and q = 3
- Q.11 It being given that 1 is a zero of the polynomial  $(7x x^3 6)$ . Find its other zeros.
- 11. -3 and 2
- Obtain all zeros of the polynomial  $(2x^3 4x x^2 + 2)$ , if two of its zeros are  $\sqrt{2}$  and  $-\sqrt{2}$



[CBSE 2008C]

12. 
$$\sqrt{2}$$
,  $-\sqrt{2}$  and  $\frac{1}{2}$ 

Q.13 Obtain all zeros of  $(3x^4 - 15x^3 + 13x^2 + 25x - 30)$ , if two of its zeros are  $\sqrt{\frac{5}{3}}$  and  $-\sqrt{\frac{5}{3}}$ 

13. 
$$\sqrt{\frac{5}{3}}$$
,  $-\sqrt{\frac{5}{3}}$ , 2 and 3

Q.14 If two zeros of the polynomial f(x) =  $(x^4 - 6x^3 - 26x^2 + 138x - 35)$  are  $(2 + \sqrt{3})$  and  $(2 - \sqrt{3})$ , find other zeros.

14. 7 and -5

#### **EXERCISE 2B**

- Q 1. Verify that 3,-2,1 are the zeros of the cubic polynomial  $p(x) = x^3 2x^2 5x + 6$  and verify the relation between its zeros and coefficients.
- Q 2. Verify that 5,-2 and  $\frac{1}{3}$  are the zeros of the cubic polynomial p(x) =  $3x^3 10x^2 27x + 10$  and verify the relation between its zeros and coefficients.
- Q 3. Find a cubic polynomial whose zeros are -2, 3 and -1.
- Q 4. Find a cubic polynomial whose zeros are 3,  $\frac{1}{2}$  and -1.
- Q 5. When  $f(x) = 4x^3 8x^2 + 8x + 1$  is divided by a polynomial g(x), we get (2x 1) as quotient and (x + 3) as remainder. Find g(x).
- Q 6. Divide  $(2x^2 + x 15)$  by (x + 3) and verify the division algorithm.
- Q 7. Divide  $(12 17x 5x^2)$  by (3 5x) and verify the division algorithm.
- Q 8. Divide  $(3x^3 4x^2 + 7x 2)$  by  $(x^2 x + 2)$  and verify the division algorithm.
- Q 9. Divide  $(6 + 19x + x^2 6x^3)$  by  $(2 + 5x 3x^2)$  and verify the division algorithm.
- Q 10. It being given that 2 is one of the zeros of the polynomial  $x^3$   $4x^2$  + x + 6. Find its other zeros.
- Q 11. It is given that -1 is one of the zeros of the polynomial  $x^3 + 2x^2 11 \times -12$ . Find all the zeros of the given polynomial.
- Q 12. If 1 and -2 are two zeros of the polynomial ( $x^3 4x^2 7x + 10$ ), find its third zero.
- Q 13. If 3 and 3 are two zeros of the polynomial  $(x^4 + x^3 11x^2 9x + 18)$ , find all the zeros of the given polynomial.
- Q 14. If 2 and -2 are two zeros of the polynomial  $(x^4 + x^3 34x^2 4x + 120)$ , find all the zeros of the given polynomial. [CBSE 2008]



- Q 15. Find all the zeros of  $(x^4 + x^3 23x^2 3x + 60)$ , if it is given that two of its zeros are  $\sqrt{3}$  and [CBSE 2009C]
- Q 16. Find all the zeros of  $(2x^4 3x^3 5x^2 + 9x 3)$ , it being given that two of its zeros are  $\sqrt{3}$  and
- Q 17. Find all the zeros of the polynomial  $(2x^4 11x^3 + 7x^2 + 13x 7)$ , it being given that two if its zeros are  $(3 + \sqrt{2})$  and  $(3 - \sqrt{2})$ .
- Q 18. Obtain all other zeros of  $(x^4 + 4.x^3 2x^2 20x 15)$  if two of its zeros are  $\sqrt{5}$  and  $-\sqrt{5}$ . [CBSE 2009C]

#### **ANSWERS (EXERCISE 2B)**

 $3.(x^3 + 6x^2 + 11x + 6) 4.(2x^3 - 5x^2 - 4x + 3) 5.(2x^2 - 3x + 2) 6.(2x - 5) 7.(x + 4) 8.(3x - 1) 9.(2x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 4) 8.(3x - 1) 9.(2x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 4) 8.(3x - 1) 9.(2x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 4) 8.(3x - 1) 9.(2x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 4) 8.(3x - 1) 9.(2x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 4) 8.(3x - 1) 9.(2x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 4) 8.(3x - 1) 9.(2x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 4) 8.(3x - 1) 9.(2x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 4) 8.(3x - 1) 9.(2x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 4) 8.(3x - 1) 9.(2x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 4) 8.(3x - 1) 9.(2x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 4) 8.(3x - 1) 9.(2x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 11x + 6) 6.(2x - 5) 7.(x + 6x^2 + 11x + 1$ 3) 10.3, -1 11. -4, -1, 3 12. 5 13.1, -2, 3, -3 14. 2, -2, -6, 5

15. 
$$\sqrt{3}$$
,  $\sqrt{3}$ , 4, -5 16.  $\sqrt{3}$ ,  $\sqrt{3}$ , 1,  $\frac{1}{2}$  17.(3 +  $\sqrt{2}$ , (3 -  $\sqrt{2}$ )  $\frac{1}{2}$ , -1 18, -1, -3

#### **CCE QUESTIONS**

# **Objective Questions**

### MCQ (2 marks)

Q 1. Which of the following is a polynomial?

(a) 
$$x^2 - 5x + 6\sqrt{x} + 3$$
 (b)  $x^{3/2} - x + x^{1/2} + 1$  (c)  $\sqrt{x} + \frac{1}{\sqrt{x}}$ 

(d) None of these

Q 2. Which of the following is not a polynomial?

(a) 
$$\sqrt{3} x^2 - 2\sqrt{3} x + 5$$
 (b)  $9x^2 - 4x + \sqrt{2}$ 

(c) 
$$\frac{3}{2}$$
 x<sup>3</sup> + 6x<sup>2</sup>  $\frac{1}{\sqrt{2}}$  - 8 (d) x +  $\frac{3}{x}$ 

The zeros of the polynomial  $x^2 - 2x - 3$  are Q 3.

The zeros of the polynomial  $x^2 - \sqrt{2} x - 12$  are Q 4.

(a) 
$$\sqrt{2}$$
,  $-\sqrt{2}$  (b)  $3\sqrt{2}$ ,  $-2\sqrt{2}$  (c)  $-3\sqrt{2}$ ,  $2\sqrt{2}$ 

(c) 
$$-3\sqrt{2}$$
 .  $2\sqrt{2}$ 

(d) 
$$3\sqrt{2}$$
,  $2\sqrt{2}$ 

The zeros of the polynomial  $4x^2 + 5\sqrt{2}x - 3$  are Q 5.

(a) 
$$-3\sqrt{2}$$
,  $\sqrt{2}$  (b)  $-3\sqrt{2}\frac{\sqrt{2}}{2}$  (c)  $\frac{-3\sqrt{2}}{2}$ ,  $\frac{\sqrt{2}}{4}$ 

(c) 
$$\frac{-3\sqrt{2}}{2}, \frac{\sqrt{2}}{4}$$

The zeros of the polynomial  $x^2 + \frac{1}{6}x - 2$  are Q 6.

(b) 
$$\frac{-3}{2}, \frac{4}{3}$$
 (c)  $\frac{-4}{3}, \frac{3}{2}$ 

(c) 
$$\frac{-4}{3}$$
,  $\frac{3}{2}$ 

(d) none of these



| Q 7. The zeros of the polynon | nial $7y^2 - \frac{11}{3}y - \frac{2}{3}$ are |
|-------------------------------|-----------------------------------------------|
|-------------------------------|-----------------------------------------------|

(a) 
$$\frac{2}{3}, \frac{-1}{7}$$
 (b)  $\frac{2}{7}, \frac{-1}{3}$  (c)  $\frac{-2}{3}, \frac{1}{7}$ 

(b) 
$$\frac{2}{7}, \frac{-1}{3}$$

(c) 
$$\frac{-2}{3}, \frac{1}{7}$$

(d) none of these

Q 8. A quadratic polynomial whose zeros are 5 and -3, is  
(a) 
$$x^2 + 2x - 15$$
 (b)  $x^2 - 2x + 15$  (c)  $x^2 - 2x - 15$  (d) none of these

Q 9. A quadratic polynomial whose zeros are 
$$\frac{3}{5}$$
 and  $\frac{-1}{2}$ , is

(a) 
$$10x^2 + x + 3$$

(b) 
$$10 x^2 + x - 3$$

(b) 
$$10 x^2 + x - 3$$
 (c)  $10x^2 - x + 3$ 

(d) 
$$x^2 - \frac{1}{10}x - \frac{3}{10}$$

Q 10. The sum and product of the zeros of a quadratic polynomial are 3 and -10 respectively. The quadratic polynomial is

(a) 
$$x^2 - 3x + 10$$
 (b)  $x^2 + 3x - 10$ 

(c) 
$$x^2 - 3x - 10$$
 (d)  $x^2 + 3x + 10$ 

Q 11. How many polynomials are there having 4 and -2 as zeros?

(b) Two

(c) Three

(d) More than three

Q 12. The zeros of the quadratic polynomial  $x^2 + 88x + 125$  are

(a) both positive

(b) both negative

(c) one positive and one negative (d) both

equal

Q 13. If  $\alpha$  and  $\beta$  are the zeros of  $x^2 + 5x + 8$ , then the value of  $(\alpha + \beta)$  is

(a) 5

(d) -8

Q 14. If a and p are the zeros of  $2x^2 + 5x - 9$ , then the value of  $\alpha\beta$  is

(a) 
$$\frac{-5}{2}$$

Q 15. If one zero of the quadratic polynomial  $kx^2 + 3x + k$  is 2, then the value of k is

(a) 
$$\frac{5}{6}$$

Q 16. If one zero of the quadratic polynomial  $(k-1)x^2 + kx + 1$  is -4, then the value of k is

(a) 
$$\frac{-5}{4}$$

Q 17. If -2 and 3 are the zeros of the quadratic polynomial  $x^2 + (a + 1)x + b$ , then

(a) 
$$a = -2$$
,  $b = 6$ 

(b) 
$$a = 2$$
,  $b = -6$ 

(d) 
$$a = 2$$
,  $b = 6$ 

Q 18. If one of the zeros of the quadratic polynomial  $x^2 + bx + c$  is negative of the other, then

(a) b = 0 and c is positive

(b) b = 0 and c is negative

(c)  $b \neq 0$  and c is positive

(d)  $b \neq 0$  and c is negative

Q 19. If the zeros of the quadratic polynomial  $ax^2 + bx + c$ , where  $a \ne 0$  and  $c \ne 0$ , are equal, then

(a) c and a have the same sign

(b) c and a have opposite signs

(c) c and b have the same sign

(d) c and b have opposite signs

Q 20. The zeros of the quadratic polynomial  $x^2 + kx + k$ , where k > 0



(a) are both positive

| Q 21. | (c) are always equal If one zero of $3x^2 + 8x^2$                                                                         | x + k be the reciprocal                                                                                          | (d) are always unequal of the other, then k = ?                |                                    |                                |
|-------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------|--------------------------------|
|       | (a) 3                                                                                                                     | (b)-3                                                                                                            | (c) $\frac{1}{3}$                                              | (                                  | d) $\frac{-1}{3}$              |
| Q 22. | If the sum of the zero its zeros, then k = ?                                                                              | the sum of the zeros of the quadratic polynomial $kx^2 + 2x + 3k$ is equal to the product of zeros, then $k = ?$ |                                                                |                                    |                                |
|       | (a) $\frac{1}{3}$                                                                                                         | (b) $\frac{-1}{3}$                                                                                               | (c) $\frac{2}{3}$                                              | (                                  | d) $\frac{-2}{3}$              |
| Q 23. | If $\alpha$ , $\beta$ are the zeros of (a) $\alpha + \beta = \alpha\beta$ (b) $\alpha + \beta$                            | If $f(x) = 2x^2 + 6x - 6$ , the $\beta > \alpha\beta$ (c) $\alpha + \beta < \alpha\beta$                         |                                                                | 0                                  |                                |
|       | If $\alpha$ , $\beta$ are the zeros of (a) 0                                                                              | f the polynomial x <sup>2</sup> -5x<br>(b) I                                                                     | $\alpha + c$ and $\alpha - \beta = 1$ , (c) 4                  | then c (                           | =?<br>d) 6                     |
| Q 25. | If $\alpha$ , $\beta$ are the zeros o                                                                                     | f the polynomial $x^2 + 6$                                                                                       | x + 2, then $\left(\frac{1}{\alpha} + \frac{1}{\alpha}\right)$ | $\left(\frac{1}{\beta}\right) = ?$ |                                |
|       | (a) 3                                                                                                                     | (b) -3                                                                                                           | (c) 12                                                         | (                                  | d) -12                         |
| Q 26. | If $\alpha$ , $\beta$ , $\gamma$ be the zeros                                                                             | of the polynomial $x^3$ -                                                                                        | 6x <sup>2</sup> -x+ 30, then (d                                | αβ + βγ                            | $(\gamma + \gamma \alpha) = ?$ |
|       | (a) -1                                                                                                                    | (b) 1                                                                                                            | (c) -5                                                         | •                                  | d) 30                          |
| Q 27. | 7. If $\alpha$ , $\beta$ , $\gamma$ are the zeros of the polynomial $2x^3 + x^2 - 13x + 6$ , then $\alpha\beta\gamma = ?$ |                                                                                                                  |                                                                |                                    |                                |
|       | (a) -3                                                                                                                    | (b) 3                                                                                                            | (c) $\frac{-1}{2}$                                             | d) $\frac{-13}{2}$                 |                                |
| Q 28. | If $\alpha$ , $\beta$ , $\gamma$ be the zeros and $\alpha\beta\gamma$ = -24, then p                                       | y(x) = ?                                                                                                         |                                                                |                                    |                                |
| Q 29. | (a) $x^3 + 3x^2 - 10x + 24$<br>If two of the zeros of                                                                     | (b) $x^3 + 3x^2 + 10x - 24$<br>the cubic polynomial a                                                            |                                                                |                                    |                                |
|       | (a) $\frac{-b}{a}$                                                                                                        | (b) $\frac{b}{a}$                                                                                                | (c) $\frac{c}{a}$                                              | (                                  | d) $\frac{-d}{a}$              |
| Q 30. | ). If one of the zeros of the cubic polynomial $ax^3 + bx^2 + ex + d$ is 0, then the product of t other two zeros is      |                                                                                                                  | en the product of the                                          |                                    |                                |
|       | (a) $\frac{-c}{a}$                                                                                                        | (b) $\frac{c}{a}$                                                                                                | (c) 0                                                          |                                    | (d) $\frac{-b}{a}$             |
| Q 31. | If one of the zeros of other two zeros is                                                                                 | the cubic polynomial x                                                                                           | $x^3 + ax^2 + bx + c is$                                       | -1, ther                           | n the product of the           |
|       | (a) a – b - l                                                                                                             | (b) b − a − l                                                                                                    | (c) 1- a + b                                                   | (                                  | d) l + a – b                   |
| Q 32. | If the zeros of the pol                                                                                                   | ynomial $x^{3} - 3x^{2} + x + 1$                                                                                 | are a - d, a and a                                             | + d, th                            | en a + d is                    |
|       | (a) a natural number                                                                                                      | (b) an integer                                                                                                   | (c) a rational nu                                              | mber (                             | d) an irrational               |
| numbe | er                                                                                                                        |                                                                                                                  |                                                                |                                    |                                |
| Q 33. | If $\alpha$ , $\beta$ be the zeros o                                                                                      | f the polynomial $x^2 - 8$                                                                                       | $8x + k$ such that $\alpha^2$                                  | $^2 + \beta^2 =$                   | 40, then k = ?                 |

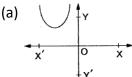
(b) are both negative

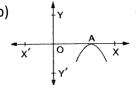


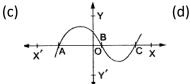
(a) (

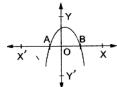
(b) 9

- (c) 12
- (d) -12
- Q 34. If  $\alpha$ ,  $\beta$  be the zeros of the polynomial  $2x^2 + 5x + k$  such that  $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$ , then k = ?
  - (a) 3


(b) -3


- (c) -2
- (d) 2
- Q 35. On dividing a polynomial p(x) by a non-zero polynomial q(x), let g(x) be the quotient and r(x) be the remainder, then p(x) = q(x).g(x) + r(x), where
  - (a) r(x) = 0 always


- (b) deg r(x) < deg g(x) always
- (c) either r(x) = 0 or deg r(x) < deg g(x)
- (d) r(x) = g(x)
- Q 36. Which of the following is a true statement?
  - (a)  $x^2 + 5x 3$  is a linear polynomial.
- (b)  $x^2 + 4x 1$  is a binomial.


(c) x + 1 is a monomial.

- (d)  $5x^3$  is a monomial.
- Q 37. If  $\alpha$ ,  $\beta$  are the zeros of the polynomial  $ax^2 + bx + c$ , then  $(\alpha^2 + \beta^2) = ?$ 
  - (a)  $\frac{a^2 2bc}{b^2}$
- (b)  $\frac{b^2 2ac}{a^2}$
- (c)  $\frac{a^2 + 2bc}{b^2}$
- (d)  $\frac{b^2 + 2ac}{a^2}$
- Q 38. Which of the following is not a graph of a quadratic polynomial?









# MCQ Based on Synthesis (2 marks)

- Q 39. Read the statements given below:
  - I. If  $\alpha$ ,  $\beta$  are the zeros of the polynomial  $x^2$  p(x + 1)- c, then  $(\alpha + 1)(\beta + 1) = 1$  c.
  - II. If  $\alpha$ ,  $\beta$  are the zeros of the polynomial  $x^2 + px + q$ , then the polynomial having  $\frac{1}{\alpha}, \frac{1}{\beta}$  as
  - zeros is  $qx^2 + px +1$ .
  - III. When\* $^3$  +  $3x^2$  -5x + 4 is divided by (x + 1), then the remainder is 9. Which of the above statements is false?
  - (a) I only
- (b) II only
- (c) III only
- (d) I and HI both

- Q 40. Read the statements given below:
  - I. If the polynomial  $p(x) = 2x^3 kx^2 + 5x + 2$  is exactly divisible by (x + 2), then k = -6.
  - II. If the polynomial  $q(x) = x^3 7x + k$  when divided by (x 1) leaves the remainder 2, then k = 6.
  - III. If two zeros of the polynomial  $f(x) x^3 5x^2 16x + 80$  are equal in magnitude and opposite in sign, then the third zero is 5.



Which of the above statements is not true?

(a) I only

(b) II only

(c) III only

(d) I as well as II

#### MCQ Assertion-and-Reason Type (2 marks)

Each question consists of two statements, namely, Assertion (A) and Reason (R). For selecting the correct answer, use the following code:

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
- (c) Assertion (A) is true and Reason (R) is false.
- (d) Assertion (A) is false and Reason (R) is true.

#### Q 41.

| Assertion (A)                                                                        | Reason (R)                                      |
|--------------------------------------------------------------------------------------|-------------------------------------------------|
| If one zero of the polynomial $p(x) = k^2 + 4x^2 + 9x + 4k$ is the reciprocal of the | If $(x - \alpha)$ is a factor of the polynomial |
| zero, then $k = 2$ .                                                                 | $p(x)$ , then $\alpha$ is a zero of $p(x)$ .    |

The correct answer is: (a)/(b)/(c)/(d).

| Assertion (A)                                | Reason (R)                             |  |
|----------------------------------------------|----------------------------------------|--|
| The polynomial $p(x) = x^3 + x$ has one real | A polynomial of nth degree has at most |  |
| zero.                                        | n zeros.                               |  |

The correct answer is: (a)/(b)/(c)/(d).

| Assertion (A) | Reason (R)                                                                                  |
|---------------|---------------------------------------------------------------------------------------------|
|               | When a polynomial $p(x)$ is divided by $(x - \alpha)$ , then the remainder is $p(\alpha)$ . |

The correct answer is: (a)/(b)/(c)/(d).

| Assertion (A)                           | Reason (R)                                                                                                          |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| and -2 as zeros is $x^2$ - $2x$ - $8$ . | The monic quadratic polynomial having a and p as zeros is given by $p(x) = x^2 - (\alpha + \beta)x + \alpha\beta$ . |

**HINT** A monic quadratic polynomial is one in which the coefficient of  $x^2$  is 1. The correct answer is: (a)/(b)/(c)/(d).

#### True/False Type (2 marks)

- Q 45. If the zeros of a quadratic polynomial  $ax^2 + bx + c$  are both negative then a,b,c will have the same sign.
  - (a) True

(b) False

Matching of columns (2 marks)





#### Q 46. Match the following columns:

| Column I                                                                 | Column II |
|--------------------------------------------------------------------------|-----------|
| (a) If $\alpha$ and $\beta$ be the zeros of the polynomial $x^2$ -5x + k | (p) 10    |
| such that $(\alpha - \beta) = 1$ , then $k = \dots$                      |           |
| (b) If one zero of $4x^2 + 17x + p$ is the reciprocal of the             | (q) -3    |
| other, then P=                                                           |           |
| (c) If the zeros of $x^3 - 6x^2 + 3x + m$ are (a-d),a and (a + d),       | (r) 4     |
| then m =                                                                 |           |
| (d) If the zeros of $x^3 + 9x^2 + 23x + 15$ are (a - d),a and (a +       | (s) 6     |
| d), then a =                                                             |           |

The correct answer is:

- (a)-....
- (b)-....
- (c)-....
- (d)-....

#### Q 47. Match the following columns:

| Column I                                                               | Column II                   |
|------------------------------------------------------------------------|-----------------------------|
| (a) The polynomial whose zeros are 2 and                               | (p) $x^2 - 4x + 1$          |
| -3 is                                                                  |                             |
| (b) The polynomial whose zeros are                                     | (q) $x^2 - 2\sqrt{3} x + 2$ |
| $(2 + \sqrt{3})$ and $(2 - \sqrt{3})$ is                               |                             |
| (c) The polynomial whose zeros are $\frac{3}{2}$ and $-\frac{1}{2}$ is | (r) $x^2 + x - 6$           |
|                                                                        | (s) $4x^2 - 4x - 3$         |
| (d) The polynomial whose zeros are $(\sqrt{3} + 1)$ and $(\sqrt{3} -$  | $(S) 4x^2 - 4x - 3$         |
| 1) is                                                                  |                             |

The correct answers is:

- (a) -....,
- (b) -...,
- (c)-....,
- (d)-....

#### **Answers**

- 1.(d) 2(d) 3.(c) 4.(b) 5.(c) 6.(b) 7.(a) 8.(c) 9.(d) 10.(c) 11.(d) 12.(b) 13.(b) 14.(c) 15.(d) 16.(b) 17.(c) 18.(b) 19.(a) 20.(b) 21.(a) 22.(d) 23.(a) 24.(d) 25.(b) 26.(a) 27.(a) 28.(c) 29.(a) 30.(b) 31.(c) 32.(d) 33.(c) 34.(d) 35.(c) 36.(d) 37.(b) 38.(c) 39.(c) 40.(b)
- 41.(a)-(s), (b)-(r), (c)-(p), (d)-(q) 47. (a)-(r), (b)-(p), (c)-(s), (d)-(q)